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C R I T E R I O N  O F  F O R M A T I O N  OF A S H O C K  WAVE 

R E F L E C T E D  F R O M  A C L O U D  OF P A R T I C L E S  

S. P. Kiselev and V. P. Kiselev UDC 662.612.32 

The problem of the formation of a "collective" shock wave reflected from a cloud of particles, 
which was previously observed in experiment, is considered. A criterion of formation of a 
reflected shock wave is obtained based on the numerical and analytical solutions of the problem. 

It was found in experimental studies [1] of the interaction of a shock wave (SW) with a cloud of 
Plexiglass and bronze particles that a "collective" shock wave reflected from the cloud is formed if the volume 
concentration of the particles is mz ". 10 -2. A numerical solution of this problem gave the same results 
[2]. A criterion of formation of a "collective" SW is obtained in the present work based on numerical and 
approximate analytical solutions [2, 3]. 

We consider the formulation of the problem. There is a plane channel filled with air (Fig. 1). A cloud 
of spherical particles is located in the domain fL A SW is incident on the cloud from the left. The flow of 
gas and particles that  results from the interaction of the SW with the cloud of particles is calculated by the 
numerical method described in [2]. Depending on the parameters of the gas and the particles, a reflected SW 
or a compression wave can arise ahead of the cloud. We seek a condition for the formation of a reflected SW. 

The shock-wave intensity is characterized by the flow Mach number Mf in the coordinate system in 
which the shock wave is in the quiescent state. To distinguish between the SW and compression wave in the 
calculations, we assume that  we have a shock wave for Mf ~ 1.15 and a compression wave for Mf ~ 1.15. In 
the case of Mf I> 1.15, the entropy increment AS  behind the SW satisfies the inequality [4] 

A S  _ 27 (M~ - 1) 3 i> 5.4-10 -3. 
R 3(7 + 1)2 

Here R is the universal gas constant and 7 is the Poisson's ratio of specific heats. For Mf < 1.15, the change 
in entropy can be ignored, the flow can be considered isentropic and the compression wave acoustic; Mf is 
defined as Mf - (Vl - Df)]q ,  where Vl is the free-stream velocity, q is the speed of sound, and Df is the 
reflected wave velocity. It is seen from this formula that  Mf is the Mach number of the reflected SW. For 
Mf t> 1.15, according to [5], we obtain 

p/pl/> 1.38, (1) 

where pl and p are the pressures in front of and behind the reflected SW, respectively. Formula (1) is used as 
the condition of formation of the reflected SW, which is convenient for numerical calculations. 

Let m~ be the volume concentration of particles for which p/p1 = 1.38 and let a reflected shock wave be 
formed ahead of the cloud. The quantity m~ is a function of the parameters m~ = m~(p11, p22, vl, q ,  h, lr,'/), 
where pll and pz2 are the densities of the gas and the particles, h is the cloud length, and Ir is the relaxation 
length of the particles. We compose dimensionless complexes from these parameters (pu/p2z, M = v l / q ,  and 
h/Ir) and seek a solution as the product of the functions 

m[ = ~(pll/p22) ~o(h/lr) ~b(M) (7 -- const). 
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The form of these functions obtained by approximation of numerical calculations is presented below. 
The  t ime of formation of the  reflected SW is of the order of the  t ime of gas deceleration [2]: 

4 d 1 
, r w  . w  m .  

3 C~[v,- ~1 ~2/~1" 
Here Cd is the particle drag coefficient and rnl and m2 are the  volume concentrations of the  gas and the 
particles, related as rnl -F rnz = 1. It is necessary that  the gas and particle velocities did not have t ime to 
become equal during the  t ime of formation of the reflected SW. Thus,  the max imum pressure p behind the 
reflected wave is obtained for re ~ r12. According to [6], the characteristic t ime of relaxation of the relative 
velocity of the gas and the  particles is 

4 d 1 
T I 2  ~--- 

3 Calvl -v2l pn[p22 + m2[ra," 
This condition is fulfilled if pn/p22 "" m~/ml; whence it follows tha t  rn~ ,~ pll/p22. Therefore, the function 

can be chosen in the  form ~ = pll/p22. (We are dealing with the  lower boundary of m2 where the  reflected 
SW is already arising.) The  numerical calculations of this paper  and the approximate analytical solution of 
(7) and (8) support  this choice of the function ~. Being treated in the  coordinates m~/(p]l/p22), h/Ip, M, the 
results for bronze and Plexiglass fall on one curve (Figs. 2 and 3). 

The functions ~b(M) and ~(h/lr) are obtained by approximation of the results of numerical calculations. 
Figure 2 shows the  dependence of rn~/(p]i/p22) on M for h/Ir -- 0.4. Here points 1 refer to the  numerical 
results for Plexiglass particles, points 2 correspond to bronze particles, and the  curve was obtained by the 
approximation formula 

9.26 12.8 
~o(0.4) ~b(M) - M2 - ~ -  + 4.84. (2) 

The ratio m~/(p11/p22) versus h/lr for M = 1.3 is plotted in Fig. 3. Points 1 and 2 denote the same as 
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in Fig. 2, and the  curve corresponds to the approximation formula 

4.27- 10 -2 
r ~o(h/Ir) - h/Ir + 0.597. (3) 

Combining formulas (2) and (3), we find the  desired dependence 

rn~ __ pl__~l (0.09 ) ( 9 . 2 6  12.8 ) 
P22 k,h/lr + 1.26 \ M2 M + 4.84 . (4) 

We consider an example of formation of a reflected SW. Let a SW with a Mach number  of M0 = 1.5 be 
incident on a cloud of particles. The cloud consists of Plexiglass particles with d = 10 -2 cm, p~2 = 1.2 g /cm 3, 
and h = 2 cm. The  gas density behind the SW is p n  = 2.34- 10 -3 g / c m  s, the  flow Math  number  is M = 0.6, 
and lr = 14.4 cm. The  volume concentration of the particles calculated from (4) is rn~ = 3.25- 10 -2. 

Figure 4 shows calculated curves of P/I~ versus z for t imes 50, 100, 150, and 200 ~ e c  (curves 1-4, the 
vertical bars indicate the  cloud boundaries). The  calculations were performed for a ~as pressure pl = 2.44 arm 
behind the incident shock wave and an initial volume concentration of particles m ~ = 3.25 �9 10 -2. It is seen 
from Fig. 4 tha t  the  compression wave formed in the  forepart of the  cloud increases with time, its front 
becomes steeper because of nonlinear effects, and this wave becomes a reflected SW. Hence it follows that  
formula (4) agrees with the  numerical data. 

Kiselev and Kiselev [3] constructed an approximate analytical solution tha t  describes the  gas flow in 
a rarefied cloud of particles (rn~ ,~ 10-3). The  motion of particles was ignored, since, initially, vl >> v2. The 
effect of the cloud was considered as a small perturbation.  The  equations for the gas were expanded into a 
series in the small parameter  ra2, and linear terms of the  expansion were retained. The  linearized equations 
were solved by the  me thod  of characteristics. 

For the  nondimensionaiized perturbations of the gas velocity v = v'/vo, density ~ - pS/po, and entropy 
s = f f / c v  (the subscript  0 refers to the free-stream parameters and the prime denotes the perturbations),  we 
obtain the following equations: 

I dr) ,  

C+ C_ 

1 vo 
�9 

Co c+ c_ 

r  r 1 6 2 1 6 2  ~ =  
a0 2 0s 

7vo Oz' 
= ] h))dy, 

T 

z 

r = m~ 7(7 -- 1) Mz f (6(y) - t~(y - h))dy, 
T 

- - o o  

- - o o  

r = - m  ~ 1 -  T~ ] - h))dy. 
6d 

- - c o  

Here a0 is the  speed of sound, M = vo/ao, T ~ and T ~ are the temperatures of the gas and the particles, 
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r = 4d/(3CdVO), w = d2p~ c3/and A are the thermal capacity and thermal conductivity of the 
gas, Nu is the Nusselt number,  and 5(y) and 6(y - h) are the delta functions. The integration was performed 
along the characteristics 

C• z = (vo + ao)t + E.• Co: x = vot + ~o. 

The solution is split into 13 domains by the characteristics with constants ~+ = ~_ = ~0 = 0, ~+ = ~_ = ~0 = h 
and the straight lines x = 0 and x = h, as is shown in Figs. 5 and 6 for M < 1 and M > 1, respectively. 

The term proportional to Os/Ot is missing in formulas (3.6) and (3.7) of [3]. Allowance for this term 
yields 

/ ~'"--~oo(L~ + / ~ ,. / ~'"-~o0(oo:~ ( - '  + / ,. , 
c +  c+  c , .  c _  

Ignoring the heat transfer, we write a corrected solution. For subsonic flow, we have 

v' _m._~ (vot + Mz = 2~" 1--------~)(1 + ' ( ' y -  1)M) in f~l, 

v ' =  m~ Mh 
2~- 1 - M (1 + (~ - 1)M) in a2 ,  

2r(1 - M) 1 + (7 - 1)M l + M in ~3,  ~13, 

v' = rn~ Mh 
2~" 1 + M (1 - (7 - 1)M) in f h ,  fts, ftr 

( ~ : + ~ )  ~o 
vt=--m~ r o t - (  ' ( 1 - ( 7 - 1 ) M )  in fiT, v ' = - 2 - ~ v o t  in f~s, 

v' = -rn2~ (v0t(1 + (7 - 1)M) + zM 1 -I+M!~_.~I)M~/ in fig, fllo, 

v' rn~ (vot(l_(7_l)M)+(x_h)M I + (7-  I)M~ ~--" -- 2--T" i -'~V[ ) in a l l  , 

vt=-m-'~ (vot-l'(z-h) 1-~)  i n  " 1 2 ,  

, ~O. ,o(  . ) ,  = 
= 2.o~ .or + ~ ( + (7 -  I)M) in a,, / '~~176 o. I +I(7_-M1)M in a2, 

, m~ ( 7___L~ ~ ) 
P = ao'~(l---~VI) I + M + (I + (7 - I)M) in a3, 
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, m~ h(7-1)M+27-1  in f14, p =  
2aor 1 + M 

, m~ ( h (7 - I )M+27-1)  in 115, 
P = a o ~  ( 7 - 1 ) ( z - v o t ) - ~  I + M  

, m~ in ~6, p, m~ x - h  ) 
P -- 2aor I + M  = 2ao"-~ iq~l~ aot ( 1 - ( 3 , - 1 ) M )  in fiT, 

p'=O in 118, I 

x p'=m~176 ~ ) ( 1 - ( q - 1 ) M ) i n  111o, 
1+ 

pt = m~ 

, m~ ( ( 7 -  1)M + 2 7 - 1  _ aot(1 + ( 7 -  1)M)) 
P = 2ao----'~.(z-h) I + M  in i l l 2 ,  

pl = m~ 
( l + l _ M 2 ) Z +  2 ~---~r . ) i n  1113, ( - -  (7-- 1)vot-- 7M--'-~2 h 1+(7-I)M~ 

~0 7 

S' = 0 in f~l, f~2, 116,117, 5'I = m2~ 3' (3' -- 1)M2x/(vo r) in 11a, 119, 

S' = m~ - 1)M2t/r in I"/8, 1110, 11n, 1113, 

St=m~ in 114. 

rt~O Spo 
loot(l + I)M)-. I)M + in 

2aor \ 1 + M / 

(g) 

The qualitative curve of v'(z) constructed in accordance with (5) for a fixed time t is shown in Fig. 7. 
A compression wave propagates toward the gas flow which slows down in this wave, while in the cloud, the 
gas is accelerated in the rarefaction wave. We note that the previously observed [3] difference between the 
numerical and analytical solutions in the domain 114 has disappeared. 

�9 For supersonic flow, the solution is 

v' ra~ 7M2 v'=  m~ 7M2 
= - - z  in 111, M--T----h in 112, T M 2 - 1  r - 1  

v' = - 2"~-m~ (27M-~2h-\M2-1 ~" (rot M-1M z)(1 + (7 -1 )M))  in 11a, 11n, 

v ' =  m~ Mh ( 1 - ( 7 - 1 ) M )  in 114,1ls, 116, 
2/" M + I  

v'= m~(vo t - ( z -h )  M ) v '=  m~ in fh, -2--~- ~ ( 1 - ( 7 - 1 ) M ) i n  11,,11., - -7 -  

r n ~  in 119, fho, I 
v =- -2T 

v' m~ 7M2 (x-h))  in 1112, 
= --~-- M~-I 

pl=  rn~ I m~176 h in fi2, 
aor(M 2 - 1 )  x in 111, P - a o r ( M  2 - 1 )  

m2~ ( 2q.h "~ 
2aor \M 2 - 1  + a ~  1 + ( 7 - 1 ) M  p l  l~'--i :r) in 113, 
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' rn~176 (2(7 - l)(x - rot)- h (7 - I) Ms + 1 + 7(M - 2)) in 115, 
P -  2ao~" M ~ - ' I  

' m~176 h - ~  ) rn~ h ( 7 - 1 ) M - 1  in f~6, p - 
2aor M + 1 2ao~" ~ + aot ((7 - 1)M - 1) in [17, 

) p ' = O  in fts, p' m~176 M-+ aot ( ( 7 - 1 ) M - 1 )  in 119, 
= ~ 1 

P' = rn~176 (aot(1 + ( 7 - 1 ) M ) -  x ( 7 -  1)MS + 1MS- +- 7 ( M -  2) ) in f~lo, 

x 27 27h 
2ao~" 

- - - -  m 

p,=m~ x - h  in ftlS, 
a0r M s - 1 

m~176 (,(z - h) (7 - 1)M ~M 2+ 1_+17(M - 2) _ aot(1 + (7 - 1)M))_ in illS, 

S' = 0 in fl~, NT, S ' = m ~ c v 7 ( 7 -  1)MSx/(vo~ ") in 111, fho, 

Y = ~ 7 ( 7 -  1)M~'/~ in 
S' = m~162 7 (7 -  1)MS(~0t- x + h)/Cv0~) 

Y =m~ 1)MSh/(vol ") in 

f/S, [19, 

in 115, fhl, 11"/12, 1113, 

I'~2,113, ~4. 

(6) 

A comparison of systems (6) and (3.12) from [3] shows that the solution of (3.12) is true in Ct,. Hence, 
all inferences about the dependence M(x) drawn on the basis of this equation are also true. System (5) and 
(6) is also valid for a cloud of particles of finite dimensions which suddenly enters a uniform gas flow. We note 
that formulas (5) and (6) are inapplicable in the vicinity of the point M = 1. 

Figure 8 shows the function vl(z) for the flow Mach numbers M1 and M2, where M1 < M. < M2, 
M. = 1/(7 .2 1). It is evident that the gas is decelerated in the cloud and accelerated in the rarefaction 
wave behind the cloud. For M > M., the gas acquires a velocity higher than the gas velocity ahead of the 
cloud. This is related to the high pressure in the cloud and the adiabatic gas expansion behind the cloud. 
This effect is confirmed by results of numerical calculations (see Fig. 9, where v -- v0 + v e and the vertical 
bars indicate the cloud boundaries). At the entrance to the cloud, the gas has the following parameters: 
M = 4, pll = 10 -3 g/cm 3 and v0 = 1.36- 105 cm/sec. The parameters of the cloud of particles are as follows: 
m ~ = 10 -3, p22 = 1.2 g/cm 3, h = 1 cm, and d = 100 pro. 

We evaluate the condition of formation of the reflected SW using the approximate solution (5) and 
(6). The compression wave that arises ahead of the cloud of particles is formed in the domain G2- Therefore, 
we use the solution from 112 to calculate this wave. 
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According to (1), we assume that the reflected shock wave is formed if f / p l  ~ p'/pl + S'/cv ~. 0.4, 
where p', p', and S' are the perturbations of the gas pressure, density, and entropy due to the interaction with 
the cloud of particles. Substituting p, and S ' from (5), we obtain the condition of formation of the reflected 
SW for M < 1: 

rn~=0"8p l ]  1 1 - M  
7 P22 h/Ip M2(1 + ( 7 - 1 ) M ) "  (7) 

For supersonic flow, a similar substitution from (6) yields the analytical solution 

0.4 Pll 1 M 2 - 1 

m~ = "7 2 P22 h/Ir M 2 + (I - 1/7)M2(M 2 - I)" (8) 

The dashed curve in Fig. 3 shows the ratio rn~/(pll/pz2) versus h/Ir obtained using formula (8). The 
analytical and numerical results are in good agreement for h/lr< 0.1. For larger values of h/Ir, the analytical 
and numerical solutions are different, and this leads to the difference in the values of rn]. 

Figure 10 shows a comparison of the numerical (the solid curve) and analytical (the dashed curve) 
sohtions for the curve of rrq/(plZ/p2z) versus M for h/lr = 0.04. These solutions are in good agreement in 
the supersonic-flow region. In the vicinity of M = 1, the analytical solution is inoperative, and the difference 
for M < 1 occurs because rn] lies in a region in which the approximate solution yields a significant error. 
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